Categories: Digitalización

¿Simple moda o verdadera innovación?

Históricamente la toma de decisiones en los contextos de producción en las plantas de manufactura y en el entorno del desarrollo de negocios han sido en algunos casos fundamentales para el crecimiento de las empresas permitiendo la creación de modelos innovadores de servicios, y en otros, factor de su debacle.

Hoy en día responder a ciertas preguntas clave en estos entornos, de manera rápida y eficaz puede ser el factor que nos permita generar ahorros importantes, nuevos ingresos, evitar riesgos para la empresa o generar la próxima disrupción del mercado que ponga a la empresa en una posición privilegiada.

En las áreas a cargo de los procesos operativos y de producción (OT) las preguntas que deben resolver a fin de optimizar los procesos y reducir los costos asociados a los mismos son entre otras:

¿Cuánto producimos?

¿Cuál es el nivel de merma?

¿Cuál es la eficiencia del proceso?

¿Cuál es el gasto energético en la producción de una unidad?

¿Cuál es el estado de salud de la maquinaria?

¿Es posible incrementar la producción con la maquinaria que ya tenemos?

La óptima respuesta a estas preguntas permite tomar decisiones tales como:

–Incrementar o reducir el volumen de producción de acuerdo con la demanda a fin de implementar un modelo just in -time con mínimo requerimiento de inventario.

–Cambiar o no la infraestructura de producción a fin de utilizar al máximo los insumos y reducir o eliminar desperdicios (costos) y contar con mayor/mejor capacidad de producción.

–Decidir sobra la inversión en energías renovables, o proyectos de sustentabilidad energética

–Decidir sobre impulsar iniciativas que generen una disrupción en el mercado que le den a la empresa una significativa ventaja competitiva.

Es en los puntos anteriores donde el análisis de datos y las tecnologías desarrolladas para tal efecto tienen su mayor impacto. Así, tecnologías como machine learning (ML) o deep learning (DL) se han convertido en los dos últimos años en ejes de la innovación tecnológica y las grandes disrupciones de mercado en los sectores industriales, de consumo masivo, comercio electrónico, financiero, y de servicios.

A manera de ejemplo, Gartner estima que para 2025, el 60% de las cámaras de vigilancia de seguridad integrarán funciones de análisis y monitoreo en tiempo real en el mismo dispositivo, en comparación con el 21% en 2020.

Adicionalmente se estima que para 2025, las organizaciones que interactúan con sus clientes a través de máquinas verán aumentar las oportunidades de servicios facturables totales en un 20 % debido a una mayor conciencia de las necesidades de estos.

Anunciante

Junto con el desarrollo de ML y AI, las tecnologías para el procesamiento de datos ligeros tales como edge computing, que aprovechan las capacidades de cómputo de los equipos de acceso que conectan los dispositivos IoT, está permitiendo explotar rápidamente las capacidades de ML mayormente en el entorno operativo, precisamente para habilitar la toma de decisiones sobre aspectos de optimización de los procesos y de negocio, permitiendo, por ejemplo, responder preguntas tales como:

¿Qué métodos publicitarios impulsan mejor las ventas?, ¿Qué segmento de clientes comprarán un nuevo producto? ¿Cuándo se debería reponer el inventario con un modelo de push/pull?

Como podemos ver en el siguiente radar tecnológico de Gartner, en los próximos meses estas capacidades de cómputo de borde, aunadas a IA con ML serán las de mayor adopción junto con la integración de las comunicaciones de IT/OT mediante arquitecturas estandarizadas como lo es el modelo ISA-95 lo cual sienta las bases para la evolución hacia la implementación del modelo de producción 4.0.

En este contexto, Cisco apoya a las empresas mediante soluciones que incorporan IA  y cómputo de borde para resolver diversas necesidades en los sectores industriales de manufactura, energía, petróleo y gas, así como los sectores de consumo masivo, financiero y empresarial; entre estas soluciones se encuentran:

–Cybervision- Una solución de ciberseguridad para entornos industriales que utiliza tecnología avanzada de IA para la detección, contención y eliminación de amenazas, conocidas y desconocidas.

–App Dynamics- Utiliza tecnologías avanzadas de IA para el análisis de los flujos de información en los procesos digitales para optimizar los mismos, y mejorar la experiencia de los clientes y también para identificar y rápidamente resolver problemas en los mismos, adicionalmente permite análizar el rendimiento de las aplicaciones.

–IoT Operations Dashboard: Permite conectar dispositivos (gateways) con capacidad de cómputo de borde para la extracción de datos de dispositivos IoT y utiliza ML para el análisis de los datos proyectándolos en un pánel digital para su fácil interpretación, a través de un modelo de consumo flexible en la nube.

Paco Bolaños

Cuenta con 25 años de experiencia profesional en la industria de las telecomunicaciones y 20 años de experiencia en Cisco Systems. Se incorporó a la empresa en el año 2000, como parte del equipo de ingeniería de proveedores de servicios en México, dando soporte a importantes empresas del sector de telecomunicaciones.

En 2007 se unió al equipo del sector público enfocándose en las verticales de Educación y Energía, apoyando al Ministerio de Educación y a los incumbentes de Energía PEMEX (Petróleo y Gas) y CFE (Electricidad). En 2013 se incorpora a la Unidad de Negocio de IoT como Ingeniero de Sistemas de Consultoría para América Latina. Desde 2016 se desempeña como Arquitecto de Internet de las Cosas (IoT) y Transformación Digital para América Latina. Además, es asesor de contenido de los exámenes de certificación Cisco IoT y Cyberops CCNA / CCNP.

Sus áreas de especialización incluyen: Internet de las cosas, Industria 4.0, Transformación digital, Diseño de redes, Ciberseguridad para sistemas de control industrial, Petróleo y Gas, Energía, Manufactura, Minería y Transporte.

Cuenta con una licenciatura en Electrónica y Comunicaciones por el Instituto Politécnico Nacional de México, tiene una maestría en Liderazgo y Gestión Empresarial Global de la Universidad Estatal de Arizona, Diplomados en Macroeconomía, Marketing Internacional, Comunicaciones Internacionales y Liderazgo por Thunderbird School of Global Management, Diplomado en Transformación Digital para políticas públicas del Banco Interamericano de Desarrollo, Diplomado en Ciencia de Datos y Visualización de Datos por la Universidad de Harvard, Diplomado en Diseño de Bases de Datos Relacionales por la Universidad de Indiana, Diplomado en Liderazgo e Innovación y Conciencia Cultural por MIT. También posee la certificación CMNP y la insignia del Consorcio de Talentos de IoT sobre ciberseguridad para sistemas de control industrial, y es ex miembro de CIGRE.

Ha sido también orador en diferentes fotos de industria por todo América Latina y ha sido autor de varios artículos técnicos sobre temas de IoT.